ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Улан-Удэнский колледж железнодорожного транспорта - филиала Федерального государственного бюджетного образовательного учреждения высшего образования «Иркутский государственный университет путей сообщения» (УУКЖТ ИрГУПС)

С.А.Прейзнер

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению контрольных работ

ПМ.01 Эксплуатация и техническое обслуживание подвижного состава МДК.01.02 Эксплуатация подвижного состава

(по видам подвижного состава)

и обеспечение безопасности движения поездов

Тема 2.1 Автоматические тормоза электроподвижного состава

для специальности

23.02.06 Техническая эксплуатация подвижного состава железных дорог (локомотивы)

Базовая подготовка среднего профессионального образования Заочная форма обучения на базе среднего общего образования

Улан-Удэ 2024

УДК 629.42 (07)

ББК 39.23

Π-17

С.А.Прейзнер

МДК.01.02 Эксплуатация подвижного состава (по видам подвижного состава) и обеспечение безопасности движения поездов [Текст]: Методические указания по выполнению контрольных работ для обучающихся заочной формы обучения специальности 23.02.06 Техническая эксплуатация подвижного состава железных дорог (локомотивы)/ С.А.Прейзнер; Улан-Удэнский колледж железнодорожного транспорта ИрГУПС. — Улан-Удэ: Сектор информационного обеспечения учебного процесса УУКЖТ ИрГУПС, 2024. — 49с.

Методические рекомендации содержат материалы для выполнения контрольной работы: конкретные ситуации, упражнения и задания, по ключевым темам курса, охватывает все аспекты междисциплинарного курса дисциплины, способствует интеграции знаний и приобретению ключевых компетенций в процессе выполнения. Соответствуют требованиям Государственного образовательного стандарта.

Предназначено для обучения студентов среднего профессионального образования.

УДК 629.42 (07)

ББК 39.23

Рассмотрено на заседании ЦМК протокол № 7 от 04.03.2024 и одобрено на заседании Методического совета колледжа протокол № 4 от 14.03.24.

С.А.Прейзнер, 2024

©УУКЖТ ИРГУПС, 2024

Содержание

Пояснительная записка	•
Контрольное задание № 1	
Контрольная работа №11	0
Методические указания к выполнению контрольной работы № 11	7
Контрольное задание № 2	29
Контрольная работа № 2	2
Методические указания к выполнению контрольной работы № 2 3	8
Вопросы для самопроверки при подготовке к экзамену 44	4
Рекомендуемая литература	

Пояснительная записка

Методические указания по выполнению контрольных заданий разработаны в соответствии с рабочей учебной программой ПМ.01 Эксплуатация и техническое обслуживание подвижного состава специальности 23.02.06 Техническая эксплуатация подвижного состава железных дорог (локомотивы) и требованиями к результатам освоения программы подготовки специалистов среднего звена ФГОС СПО по данной специальности. Методические указания предназначены для обучающихся заочной формы обучения.

Цель данных методических указаний — оказать помощь обучающимся при выполнении контрольных заданий по основным разделам темы 2.1 Автоматические тормоза электроподвижного состава, МДК.01.02. Эксплуатация подвижного состава (по видам подвижного состава) и обеспечение безопасности движения поездов.

Выполнение контрольных заданий направлено на формирование общих и профессиональных компетенций, закрепление знаний, освоение необходимых умений и способов деятельности:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности
- ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях
 - ОК 04. Эффективно взаимодействовать и работать в коллективе и команде
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста

- ОК 06. Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных общечеловеческих ценностей, в том числе с учетом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях
- ОК 08. Использовать средства физической культуры для сохранения и укрепления здоровья в процессе профессиональной деятельности и поддержания необходимого уровня физической подготовленности
- ОК 09. Пользоваться профессиональной документацией на государственном и иностранном языках.
 - ПК 1.1. Эксплуатировать подвижной состав железных дорог
- ПК 1.2. Производить техническое обслуживание и ремонт подвижного состава железных дорог в соответствии с требованиями технологических процессов
 - ПК 1.3. Обеспечивать безопасность движения подвижного состава В результате выполнения контрольных заданий обучающийся должен: **знать:**
- устройство, действие, обслуживание, эксплуатацию и ремонт тормозного оборудования подвижного состава.

уметь:

- объяснить по плакату или схеме устройство и действие того или иного тормозного прибора и тормозного оборудования в целом.

Весь программный материал делится на два задания. После изучения материла каждого задания необходимо выполнить контрольную работу. Задания на контрольные работы составлены в 50-и вариантах. Вариант контрольной работы определяется двумя последними цифрами шифра студента.

Перед выполнением контрольной работы изучить методические указания по их выполнению.

Излагаемый в контрольной работе материал следует иллюстрировать чертежами (эскизами, схемами). Чертежи необходимо выполнять с соблюдением требований нормроконтроля, расчеты сопровождать соответствующими формулами, указывая их смысл, значение, а также размерность получаемых цифровых данных. Не допускается вклейка схем и чертежей. Вырезание из книг, инструкций и альбомов.

При подготовке к экзамену рекомендуется ответить на вопросы, которые помещены в конце методических указаний.

Критерии оценок:

«отлично» выставляется, если обучающийся в полном объеме дал ответы на поставленные вопросы, привел поясняющие рисунки, схемы, свободно использует справочную литературу, делает обоснованные выводы по принципу действия электрических аппаратов и последовательности действия цепей управления;

«хорошо» выставляется, если обучающийся в полном объеме дал ответы на поставленные вопросы, привел поясняющие рисунки, схемы, но с некоторыми недочётами, ориентируется в справочной литературе, может сделать выводы по принципу действия электрических аппаратов и последовательности действия цепей управления;

«удовлетворительно» выставляется, если обучающийся с помощью преподавателя дал ответы на поставленные вопросы, привел поясняющие рисунки, схемы, пользуется справочной литературой, имеет представление по принципу действия электрических аппаратов и последовательности действия цепей управления;

«неудовлетворительно» выставляется, если обучающийся не ответил на вопросы контрольного задания, не умеет пользоваться справочной литературой, не имеет представления по принципу действия электрических аппаратов и последовательности действия цепей управле

Контрольное задание №1

Введение

Содержание, цель, задачи предмета. Назначение тормозов в поезде, их роль в обеспечении безопасности движения поездов, повышении скоростей, увеличении длинны и массы поездов.

Краткий исторический обзор развития тормозов.

1. Основы торможения

Возникновение тормозной силы как результат трения колонок о поверхность катания колеса.

Коэффициент трения, его зависимость от различных факторов, влияние на величину тормозной силы поезда.

Сила сцепления колеса с рельсом и факторы, оказывающие влияние на его величину. Мероприятия по увеличению коэффициентов трения и сцепления. Недостатки чугунных тормозных колодок.

Применение композиционных колодок, их достоинства и недостатки. Максимально допустимое нажатие тормозных колодок. Понятие о заклинивании колесных пар, причинах возникновения и мерах предупреждения.

Понятие о тормозном пути, его элементах и способах определения величины.

Классификация и основные свойства тормозов

Классификация тормозов. Пневматические, электропневматические, электрические, электромагнитные, рельсовые и дисковые тормоза.

Сравнительная оценка тормозов различных систем.

Тормозные процессы. Требования ПТЭ к устройству обслуживанию и эксплуатации тормозов.

Назначение и расположение

тормозного оборудования на подвижном составе

Схемы расположения и принцип действия всего комплекса тормозного оборудования на локомотивах, электро- и дизель- поездах, пассажирских и грузовых вагонов международного сообщения и вагонов скоростных поездов.

2.Приборы питания тормозов сжатым воздухом

Перечень приборов, входящих в эту группу. Классификация компрессоров, применяемых на локомотивах, электро- и дизель-поездах. Требования, предъявляемые к компрессорам. Назначение, устройство, действие, порядок регулировки и схемы их включения.

Регуляторы давления компрессоров — устройство, действие, порядок регулировки и схемы их включения.

Главные резервуары – назначение, устройство и характеристики.

Техника безопасности.

3.Приборы управления тормозами

Перечень приборов, входящих в эту группу. Поездные краны машиниста — назначение, типы, устройство, действия и требования, предъявляемые к ним. Основные характеристики кранов машиниста.

Краны вспомогательного тормоза локомотива — назначение, устройство, действие и требования, предъявляемые к ним.

Дополнительные приборы — блокировочные устройства, комбинированные и краны двойной тяги, устройства контроля целостности магистрали, электроблокировочные клапаны, автоматические выключатели управления. Приборы контроля давления воздуха — монометры, их назначение, устройство и действия.

4.Приборы торможения

Перечень приборов, входящих в эту группу. Воздухораспределители пассажирского типа – их назначение, устройство, действие и требования, предъявляемые к ним. Реле давления.

Воздухораспределители западно-европейского типа, их основные особенности.

Регулирования силы нажатия тормозных колодок в зависимости от скорости движения.

Воздухораспределители грузового типа- назначение, устройство, действие, и требования, предъявляемые к ним.

Автоматические регуляторы режимов торможения- авторежимы; типы, назначение, устройство, действие и требования, предъявляемые к ним.

Классификация тормозных цилиндров, их устройство и действие.

Запасные и рабочие резервуары – назначение и устройство.

Техника безопасности.

5. Воздухопровод и рычажные передачи

Классификация воздухопроводов по их назначению.

Тормозная магистраль, ее устройство и содержание. Требования предъявляемые к воздухопроводам подвижного состава.

Назначение, устройство и действие разобщительных и стоп- кранов, выпускных, предохранительных, переключательных и обратных клапанов, соединительных рукавов, масловлагоотделителей и фильтров; уход за ними.

Тормозные рычажные передачи

Назначение, классификация, устройство и действие. Схемы типовых рычажных передач локомотивов и вагонов. Их регулировка. Автоматические регуляторы.

Техника безопасности.

Контрольная работа №1

Таблица 1

Две последние		Номер	Две последние		Номер	
цио	рры шифра	Вариант	вопросов	цифры шифра	Вариант	вопросов
01	или 51	1	5 24 58 70	26 или 76	26	16 37 55 73
02	52	2	6 25 57 71	27 77	27	15 36 56 72
03	53	3	7 26 56 72	28 78	28	14 35 57 71
04	54	4	8 27 55 73	29 79	29	13 34 58 70
05	55	5	9 28 54 74	30 80	30	12 33 57 69
06	56	6	10 29 53 75	31 81	31	11 32 56 68
07	57	7	11 30 52 76	32 82	32	10 31 55 67
08	58	8	12 31 51 77	33 83	33	9 30 54 66
09	59	9	13 32 50 78	34 84	34	8 29 53 65
10	60	10	14 33 49 79	35 85	35	7 28 52 64
11	61	11	15 34 48 80	36 86	36	6 27 51 63
12	62	12	16 35 47 81	37 87	37	5 26 50 62
13	63	13	17 36 46 82	38 88	38	4 25 49 61
14	64	14	18 37 45 83	39 89	39	3 24 48 60
15	65	15	19 38 44 84	40 90	40	2 25 47 59
16	66	16	20 39 45 83	41 91	41	1 26 46 60
17	67	17	21 40 46 82	42 92	42	2 27 45 61
18	68	18	22 41 47 81	43 93	43	3 28 44 62
19	69	19	23 42 48 80	44 94	44	4 29 45 63
20	70	20	22 43 49 79	45 95	45	5 30 46 64
21	71	21	21 42 50 78	46 96	46	6 31 47 65
22	72	22	20 41 51 77	47 97	47	7 32 48 66
23	73	23	19 40 52 76	48 98	48	8 33 49 67
24	74	24	18 39 53 75	49 99	49	9 34 50 68
25	75	25	17 38 54 74	50 00	50	10 35 51 69

ВОПРОСЫ 1-23

- 1. Начертите схему тормозной рычажной передачи тележки заданной серии локомотива /или вагона электропоезда/ и нанесите на эту схему действующие при торможении силы: нажатия колодок, трения, тормозные силы и силы сцепления колесных пар с рельсами.
- 2. Подсчитайте, во сколько раз увеличится тормозная сила одной колесной пары заданного локомотива /или вагона электропоезда/ при уменьшении скорости движения в заторможенном состоянии с начальной скорости $\vartheta_{\rm H}$ до конечной скорости $\vartheta_{\rm K}$ при чугунных колодках.

3. Подсчитайте силу сцепления колесной пары с рельсами и сделайте вывод о соблюдении условия безъюзового движения локомотива при конечной скорости ϑ_{κ} и расчетном давлении в тормозных цилиндрах на груженом режиме.

Необходимые данные приведены в таблице 2.

Таблица 2

`		T	T
Номера	Серия	Скорость в начале	Скорость в конце
вопросов	локомотивов	торможения,	торможения,
		$\vartheta_{ extbf{h}}$, км/ч	$artheta_{ extbf{k}}$, км/ч
1	ВЛ60	50	20
2	ВЛ85	60	20
3	ВЛ80 ^{тк}	70	20
4	ВЛ10	80	20
5	ВЛ11	70	20
6	ВЛ80°	80	20
7	ВЛ80 ^т	70	20
8	ВЛ80 ^р	90	20
9	ВЛ65	110	20
10	2ЭС5К	100	20
11	ЭП1П	120	20
12	ТЭП70	120	20
13	ТЭМ18	70	20
14	ТЭМ18дм	80	20
15	ТЭП10	100	20
16	2M62	70	20
17	2ТЭ10Л	80	20
18	ТЭП60	120	20
19	2TЭ116	80	20
20	2TЭ10M	70	20
21	ЧМЭ3т	60	20
22	ЭР9 /мотор/	120	20
23	ЧС7	120	20

ВОПРОСЫ 24-43

- 1. Определите аналитическим методом расстояние от места начала торможения до места ограничения скорости движения на прямом участке пути.
- 2. Рассчитайте тормозную силу и мощность, развиваемую тормозной силой при начальной и конечной скоростях движения.
- 3. Определите максимальную величину затяжного спуска в %₀ по которому может проследовать поезд заданной массы с постоянной /установившейся/ ско-

ростью равной $\vartheta_{\rm H}$ с использованием только электрического /рекуперативного или реостатного/ тормоза.

4. Определите мощность, развиваемую локомотивом при электрическом торможении.

Примечание: при определении пунктов 3 и 4 для вариантов с тепловозной тягой (вопросы 35-43), принять электровозы, соответственно вопросам 24-34. Например, вопрос 34 принять электровоз ВЛ85, соответствующий вопросу 24; вопрос 35 принять электровоз ВЛ10, соответствующий вопросу 25 и т.д.

Необходимые данные приведены в таблице 3.

Таблица 3

Олица	- <u>- </u>								1	
№. № вопросов	Серия локомотива	Род поезда	Скорость в начале торможения, $^{\mathcal{C}}_{\mathcal{L}}$, км/ч	Скорость в конце торможения, $^{\mathcal{C}}_{\mathrm{H}}$, км/ч	Величина спуска, i, %.	Масса состава, m _{с.} r	Масса локомотива, m _{л.т}	Количество вагонов, п _в	Расчетная сила нажатия колодок на ось, кН /тс/	
1	2	3	4	5	6	7	8	9	10)
24	ВЛ85	груз.	70	40	-5	3990	184	57	98,1	/10/
25	ВЛ10	-"-	75	45	-6	4060	184	58	137,3	/14/
26	ВЛ10У	-''-	70	40	-7	4200	200	60	137,3	/14/
27	ВЛ11/3сек./	-''-	75	45	-8	4970	276	71	137,3	/14/
28	ВЛ11/2сек./	-''-	70	40	-9	4130	184	59	137,3	/14/
29	ВЛ80 ^т	-''-	75	45	-8	4270	190	61	137,3	/14/
30	ВЛ80 ^р	-''-	70	40	-7	4340	192	62	137,3	/14/
31	ВЛ82™	-''-	75	45	-6	4060	200	58	137,3	/14/
32	ЭП1П	пасс.	100	60	-5	1100	128	17	117,7	/12/
33	ВЛ65	-''-	100	60	-6	1100	126	17	117,7	/12/
34	2ЭС5К	груз.	80	40	-7	3920	254	56	98,1	/10/
35	2ТЭ10Л	-''-	75	45	-8	3990	258	57	117,7	/12/
36	2ТЭ10У	-''-	70	40	-9	3850	276	55	117,7	/12/
37	3TЭ10M	-''-	75	45	-8	4620	414	66	117,7	/12/
38	2ТЭ116	-''-	70	40	-7	4060	274	58	117,7	/12/
39	2TЭ10M	-''-	75	45	-6	4130	276	59	117,7	/12/
40	2M62	-''-	70	40	-5	3920	240	56	98,1	/10/
41	2ТЭ116	-''-	75	45	-6	4270	274	61	117,7	/12/
42	ТЭП60	пасс.	100	60	-5	1100	128	17	117,7	/12/
43	ТЭП70	-''-	100	60	-6	1100	130	17	117,7	/12/

ВОПРОСЫ 44-58

- 44. Опишите классификацию пневматических тормозов, объясните основные свойства и применения этих тормозов. Укажите, чем характеризуются тормозные процессы пневматических тормозов.
- 45. Укажите принципиальное отличие автоматического тормоза от неавтоматического (по действию и конструкции). Перечислите основные требования, предъявляемые к автоматическим тормозам Правилами технической эксплуатации железных дорог. Приведите поясняющие схемы.
- 46. Начертите унифицированную схему тормозного оборудования одной секции электровоза ВЛ11 и тепловозов 2ТЭ121 и ТЭ10М, опишите назначение основных приборов и их действие при зарядке, торможении и отпуске. Укажите отличие тормозного оборудования одно- и двухсекционных грузовых тепловозов и электровозов.
- 47. Начертите схему тормозного оборудования электровоза ВЛ85, опишите назначение основных приборов и их действие при зарядке, торможении и отпуске. Укажите различие в тормозном оборудовании тепловозов и электровозов.
- 48. Начертите схему тормозного оборудования электровоза ЭП1П, опишите назначение основных приборов и их действие при зарядке, торможении и отпуске.
- 49. Начертите схему тормозного оборудования электровоза 2ЭС5К, опишите назначение основных приборов и их действие при зарядке, торможении и отпуске.
- 50. Начертите схему тормозного оборудования электровоза ВЛ10, опишите назначение основных приборов и их действие при зарядке, торможении и отпуске. Укажите различие в тормозном оборудовании с тепловозом 2ТЭ116.
- 51. Начертите схему тормозного оборудования тепловоза 2ТЭ116, опишите назначение основных приборов и их действие при зарядке, торможении и отпуске. Укажите различие в тормозном оборудовании с электровозом ВЛ10.
- 52. Начертите схему тормозного оборудования тепловоза ТЭМ18дм, опишите назначение основных приборов и их действие при зарядке, торможении и отпуске. Укажите различие в тормозном оборудовании с тепловозом ТЭМ2.

- 53. Начертите схему тормозного оборудования электропоездов ЭР9П, опишите назначение основных приборов и их действие при зарядке, торможении и отпуске. Укажите различие в тормозном оборудовании с дизель- поездом ДР1П.
- 54. Опишите классификацию компрессоров, применяемых на локомотивах и моторвагонном подвижном составе. Начертите схему компрессорной установки и опишите назначение ее основных узлов.
- 55. Начертите схему компрессора типа Э-500, опишите его устройство, работу и приведите технические данные компрессора. От каких факторов зависит подача компрессоров локомотивов и как ее проверяют?
- 56. Начертите схемы регуляторов типа АК-11Б и ЗРД. Опишите устройство регуляторов и их действие. Для какой цели и каким образом на двухсекционных локомотивах, а также на локомотивах, работающих по системе многих единиц осуществляют синхронизацию работы компрессов?
- 57. Начертите схему компрессора типа K-2 и приведите краткое описание устройства, действия и его технические данные. От каких факторов зависит подача компрессов локомотивов и как ее проверяют?
- 58. начертите схему компрессора типа КТ6 и приведите краткое описание устройства, действия и его технические данные. От каких факторов зависит подача компрессоров локомотивов и как ее проверяют?

ВОПРОСЫ 59-84

- 59. Начертите схему и опишите действие крана вспомогательного тормоза локомотива усл. № 254 при торможении краном машиниста усл. № 395.
- 60. Начертите схему и опишите действие крана вспомогательного тормоза локомотива усл. № 254 при торможении и отпуска тормоза локомотива. Поясните назначение камеры объемом 0,3 л.
- 61. Начертите схему крана машиниста усл. № 395 и опишите его действие при ликвидации сверхзарядного давления в тормозной магистрали. Поясните назначение стабилизатора.
- 62. Начертите схему и опишите действие крана вспомогательного тормоза усл. № 254 при ступенчатом отпуске тормоза локомотива и заторможенном состояние тормоза.

- 63. Начертите схему крана машиниста усл. № 395 при II (поездном) положении ручки, опишите его устройство и действие. Поясните назначение уравнительного резервуара.
- 64. Начертите схему крана машиниста усл. № 395, опишите его устройство и работу при ступенчатом служебном торможении.
- 65. Начертите схему крана машиниста усл. № 395 при I положении ручки и опишите его устройство и действие.
- 66. Начертите схему регулятора зарядного давления крана машиниста усл. № 395, опишите его назначение, устройство, действие и регулировку.
- 67. Начертите схему стабилизатора давления крана машиниста усл. № 395, опишите его назначение, устройство, действие и регулировку.
- 68. Начертите схему крана машиниста усл. № 395. Укажите, какого назначение III, IV положений ручки и опишите действие крана при этом. Укажите назначение обратного клапана.
- 69. Начертите схему крана машиниста усл. № 395, опишите его устройство и действие при V и VI положение ручки.
- 70. Начертите схему крана машиниста усл. № 334Э, опишите его назначение, устройство и действие при III и IV положения ручки.
- 71. Опишите назначение крана двойной тяги, комбинированного крана, устройства № 367 блокировки тормоза, сигнализатора отпуска тормозов, пневматического датчика № 418, и автоматических пневматических выключателей управления (АВУ). Начертите принципиальные пояснительные схемы.
- 72. Начертите схему крана машиниста усл. № 334Э, опишите его назначение, устройство и действие при I, IIA, II положениях ручки.
- 73. Опишите устройство воздухораспределителя усл. № 292 и его действие при зарядке тормозов.
- 74. Опишите устройство воздухораспределителя усл. № 292 и его действие при ступенчатом служебном торможении.
- 75. Опишите устройство воздухораспределителя усл. № 292 и его действие при экстренном торможении.

- 76. Опишите устройство воздухораспределителя усл. № 305 и его действие при зарядке тормозов.
- 77. Опишите устройство воздухораспределителя усл. № 305 и его действие при ступенчатом служебном торможении.
- 78. Опишите устройство воздухораспределителя усл. № 305 и его действие при отпуске тормозов. Укажите особенности отпуска торомозов на равнинном и горном режимах.
- 79. Опишите устройство воздухораспределителя усл. № 483-000 и его действие при зарядке тормозов.
- 80. Опишите устройство воздухораспределителя усл. № 483-000 и его действие при ступенчатом служебном торможении.
- 81. Опишите устройство воздухораспределителя усл. № 483-000 и его действие при отпуске тормозов. Укажите особенности отпуска тормозов на горном режиме.
- 82. Опишите назначение, устройство и принцип действия автоматических регуляторов режимов торможения. Приведите поясняющие схемы.
- 83. Опишите назначение, классификацию и принцип действия тормозных рычажных передач. Приведите поясняющие схемы.
- 84. Опишите назначение, устройство и принцип действия регуляторов тормозной передачи. Приведите поясняющие схемы.

Методические указания к выполнению контрольной работы № 1 ВОПРОСЫ 1-23

При ответе на первый пункт вопроса надо использовать материал учебника или справочника по тормозам. Схему вычерчивать достаточно крупно и четко.

Тормозная сила колесной пары подсчитывается по формуле:

$$B_{\tau} = \varphi_{\kappa} \sum K, \kappa H$$

где ϕ_{κ} – коэффициент трения между колодкой и колесом.

 \sum К – сумма сил нажатий колодок на ось /кН/.

Расчетное давление в тормозном цилиндре на грузовых локомотивах - $P_{II} = 0.38 \text{ Mma},$

на пассажирских локомотивах - $P_{\mu} = 0.40~\text{Мпа}$ /скоростной режим не учитывать/.

Поэтому, сумма сил нажатий колодок на ось одинакова в начале и конце торможения. Соотношение тормозных сил будет зависеть от соотношений коэффициентов трения и, в конечном счете, от соотношения скоростей.

$$\frac{B_{T}^{\text{KOH}}}{B_{T}^{\text{HaY}}} = \frac{\varphi_{K}^{\text{KOH}} \sum K}{\varphi_{K}^{\text{HaY}} \sum K} = \frac{\varphi_{K}^{\text{KOH}}}{\varphi_{K}^{\text{HaY}}}$$

Для стандартных чугунных колодок коэффициент трения подсчитывается по формуле:

$$\varphi_{\rm K} = 0.6 \quad \frac{1.63 \text{ K} + 100}{8.15 \text{ K} + 100} \quad \frac{\vartheta + 100}{5\vartheta + 100}$$

Тогда окончательная формула соотношения тормозных сил примет вид:
$$\frac{B_{\mathtt{T}}^{\mathtt{KOH}}}{B_{\mathtt{T}}^{\mathtt{Haq}}} = \frac{(\vartheta_{\mathtt{K}} \! + \! 100) \! \cdot \! (5\vartheta_{\mathtt{H}} \! + \! 100)}{(5\vartheta_{\mathtt{K}} \! + \! 100) \! \cdot \! (\vartheta_{\mathtt{H}} \! + \! 100)} \, .$$

Пункт 3.

В этом пункте необходимо подсчитать тормозную силу одной колесной пары и силу сцепления колесной пары с рельсами при конечной скорости движения.

Условие безъюзового будет соблюдаться, если

$$B_{\scriptscriptstyle T}^{\scriptscriptstyle
m KOH} \leq B_{\scriptscriptstyle
m CLL}^{\scriptscriptstyle
m KOH}$$
 $B_{\scriptscriptstyle
m T}^{\scriptscriptstyle
m KOH} = arphi_{\scriptscriptstyle
m K}^{\scriptscriptstyle
m KOH} \quad \sum {
m K} \; , \; {
m \kappa H}$

$$Y_{K}^{KOH} = 0.6 \frac{1.63 \text{ K} + 100}{8.15 \text{ K} + 100} \frac{\vartheta_{K} + 100}{5\vartheta_{K} + 100}$$

где К – нажатие на одну тормозную колодку, кН.

$$K = \frac{F \cdot (P_{\pi} - \Delta P_{0}) n \cdot \eta_{n} \cdot \eta_{u} \cdot 10^{8}}{m_{u}} \cdot \kappa H$$

Где: $F = \frac{\pi \cdot \mu^2}{4}$, площадь поршня тормозного цилиндра, м².

Д – диаметр цилиндра, м;

 ${\rm P}_{\rm I\!I}$ — давление сжатого воздуха в тормозном цилиндре, Мпа;

У грузовых локомотивов принять расчетное давление в тормозном цилиндре 0,38 Мпа, у пассажирских 0,40 Мпа;

∠Р₀ = 0,40 Мпа – давление в цилиндре, необходимое для преодоления сопротивлений рычажной передачи и прижатия колодок к колесам;

n – передаточное число рычажной передачи;

 η_n – к.п.д. рычажной передачи;

 $\eta_{\text{ц}} = 0.98 - \text{к.п.д.}$ тормозного цилиндра;

 $m_{
m u}$ — количество колодок, на которое передается усилие от одного тормозного цилиндра;

$$\sum K = m_0 K$$
, κH

где m_0 – количество тормозных колодок на ось

$$\mathsf{B}_{\mathsf{ou}}^{\mathsf{кoh}} = \varPsi_{\mathsf{p}} \cdot q_{\mathsf{0}}$$
, к H

где $\Psi_{\rm p} = [0,17-0,00015\cdot(q_0-50)]\int(\vartheta)$ – расчетный коэффициент оцепления колес с рельсами;

$$q_0 = \frac{m_{
m c} \cdot g}{n_{
m oc}}$$
 — нагрузка от колесной пары на рельсы /осевая нагрузка/ , кН

где, $m_{\rm c}$ – масса локомотива, т;

 $g = 9,81 \text{ м/c}^2$, n_{oc} – количество осей локомотива.

 $\int (\vartheta - \varphi y$ нкция скорости, параметры которой зависят от типа подвижного состава.

Для локомотива при скорости 20 км/ч, $\int (\theta) = 0.76$ /справочник по тормозам, рис. 320/

Необходимые для расчета данные в таблице 4.

Таблица 4

№ вопросов	Серия локомотива	Передаточное число, <i>п</i>	Количество колодок, на которое передается усилие от одного цилиндра, \vec{x}	Диаметр тормозного цилиндра в метрах - /дюймах/	Количество колодок на ось, "	Расчетная масса ло- м сомотива,	Количество осей ло- комотива, ^и	К.п.д. рычажной пе- редачи, д
1	2	3	4	5	6	7	8	9
1	ВЛ60	9,06	3	0,356 /14/	2	138	6	0,90
2	ВЛ85	7,02	6	0,356 /14/	4	138	6	0,80
3	ВЛ8	8,10	2	0,254 /10/	2	184	8	0,95
4	ВЛ10	5,76	4	0,254 /10/	4	184	8	0,85
5	ВЛ11	5,76	4	0,254 /10/	4	184	8	0,85
6	ВЛ80 ^С	5,76	4	0,254 /10/	4	190	8	0,85
7	ВЛ80 ^Т	5,76	4	0,254 /10/	4	190	8	0,85
8	ЧС2	6,29	4	0,305 /12/	4	120	6	0,90
9	ЧС <mark>2^T</mark>	6,29	4	0,305 /12/	4	128	6	0,90
10	ЧС4 ^Т	9,74	4	0,254 /10/	4	126	6	0,90
11		6,95	4	0,305 /12/	4	164	8	0,90
12	ЧС6	7,62	4	0,305 /12/	4	172	8	0,90
13	ЧС7 ТС2	11,03	3	0,254 /10/	2	254	12	0,90
14	TЭ3	15,1	4 3 3 3 3 3 3	0,254 /10/	2	129	6	0,90
15	TЭ10	15,1	3	0,254 /10/	2	130	6	0,90
16	ТЭП10	10,77	3	0,254 /10/	2	240	12	0,90
17	2M62	15,1	3	0,254 /10/	2	258	12	0,90
18	2ТЭ10Л	5,33		0,254 /10/	4	128	6	0,88
19	ТЭП60	7,8	2	0,203 /8/	4	274	12	0,90
20	2TЭ116	7,8	2	0,203 /8/	4	276	12	0,90
21	2TЭ10B	5,4	2 3 2 2	0,254 /10/	4	123	6	0,88
22	ЧМЭ3	6,3	2	0,254 /10/	4	64	4	0,90
23	ЭР9/мотор	6,3	2	0,254 /10/	4	71	4	0,90

ВОПРОСЫ 24-43

Пункт 1.

Рассмотрим определение тормозного пути в Международной системе единиц /СИ/ и в системе единиц, определяемых Правилами тяговых расчетов /ПТР/.

Международная система

$$S_{\mathrm{T}} = S_{\mathrm{T}} + S_{\mathrm{T}}$$
, M

где $S_{\pi} = \frac{S_{o\ t\ n}}{3.6} -$ подготовительный путь /предтормозной/ , м

где ϑ_0 – скорость движения поезда в начальный момент торможения, км/ч;

 t_n – время подготовки тормозов к действию, с.

Время подготовки тормозов к действию зависит от длины поезда, типа тормозов и типа воздухораспределителя, тормозной силы поезда и уклона на пути подготовки тормозов.

$$t_n=7$$
 - $\frac{10\cdot g\cdot i}{\beta_{\scriptscriptstyle {
m T}}}$, с — грузовые составы длиной 200 осей и менее.

$$t_n=10$$
 - $\frac{15\cdot g\cdot i}{\beta_{\scriptscriptstyle
m T}}$, с — грузовые составы длиной более 200 осей до 300 включи-

тельно.

Для пассажирских поездов с ЭПТ

$$t_n = 2 - \frac{3 \cdot g \cdot i}{\beta_T}$$
 , c

где i — величина уклона ‰,

 $g = 9.81 \text{ м/c}^2 - \text{ускорение свободного падения.}$

 $oldsymbol{eta_{ exttt{T}}}=1000~\phi_{ ext{kp}}~v_{ ext{p}}$ – удельная тормозная сила, H/т

где $\varphi_{\rm Kp} = 0.27 \; \frac{\vartheta_0 + 100}{5\vartheta_0 + 100} \;$ - расчетный коэффициент трения чугунной стальной колодки;

 ϑ_0 – скорость движения поезда в начале торможения, км/ч

 $v_{
m p}$ – расчетный тормозной коэффициент.;

$$v_{
m p} = rac{\Sigma {
m K}_{
m p}^{
m c}}{m_{
m c}}$$
 - для грузового поезда.

$$v_{
m p}=rac{\sum {
m K}_{
m p}^{
m c}+\sum {
m K}_{
m p}^{
m \pi}}{m_{
m c}+m_{
m \pi}}$$
 – для пассажирского поезда.

Для грузовых поездов на отпуск до 20‰ тормозную силу и массу локомотива не учитывают, для пассажирских – расчетный тормозной коэффициент подсчитывается с учетом тормозного нажатия и массы локомотива.

 $\sum\! K_p^c - cymma$ расчетных сил нажатия тормозных колодок состава, кH

 $\sum K_p^{\pi}$ — сумма расчетных сил нажатия тормозных колодок локомотива, кН Расчетные силы нажатия тормозных колодок на ось локомотивов и вагонов в справочнике по тормозам, таблицы 245, 246. Нажатия указаны в тонно-силах, для перевода кН, необходимо указание значения умножить на 9,81.

$$\mathcal{S}_{\mathrm{A}} = \sum rac{40,85 \left(artheta_{\mathrm{H}}^2 - artheta_{\mathrm{K}}^2
ight)}{eta_{\mathrm{T}} + \omega_{\mathrm{ox}} + g \cdot i}$$
 , м или $\mathcal{S}_{\mathrm{A}} = \sum \Delta \mathcal{S}_{\mathrm{A}}$;

где $\vartheta_{\rm H}$, $\vartheta_{\rm K}$ — начальная и конечная скорости движения в расчетном интервале, км/ч;

 $eta_{\rm T} = 1000~\phi_{\rm kp}~v_{\rm p}$ – удельная тормозная сила, действующая на поезд, при средней для расчетного интервала скорости, H/т;

 $\varphi_{\rm кp} = 0.27 \, {\vartheta_{\rm cp} + 100 \over 5 \vartheta_{\rm cp} + 100} \, - \,$ расчетный коэффициент трения чугунной стандартной колодки при средней, для расчетного интервала скорости; $v_{\rm cp} \, - \,$ расчетный тормозной коэффициент, рассчитан при определении.

Необходимо помнить, что полная величина расчетного тормозного коэффициента реализуется только при экстренном торможении. В расчетах при торможении для остановки на станциях и раздельных пунктах, предусмотренных графиком движения поездов, а также при снижении скорости перед заранее известным местом ограничения скорости, используют служебное торможение с расчетным

тормозным коэффициентом 0,5 $v_{\rm p}$ для грузовых поездов и 0,6 $v_{\rm p}$ – для пассажирских поездов.

$$\omega_{
m ox} = rac{\omega_{
m x} m_{
m J} + \omega_{
m 0}^{II} m_{
m c}}{m_{
m c} + m_{
m J}} -$$
 основное удаленное сопротивление движению поезда

в режиме холостого хода / выбега или механического торможения/, при средней скорости в расчетном интервале, Н/т.

Формулы для расчета сопротивления движению подвижного состава приведены в таблице 5.

Таблица 5.

Тип подвижного состава и	Основное удельное сопро	отивление движению, Н/т
режим работы	на звеньевом пути	на бесстыковом пути
Тепловозы, электровозы в режиме: тяги холостого хода	$\omega_0^I = 18,64+0,098\vartheta+0,0029\vartheta^2$ $\omega_X = 23,54+0,108\vartheta+0,0034\vartheta^2$	$\omega_0^I = 18,64+0,078\vartheta+0,0024\vartheta^2$ $\omega_x = 23,54+0,0088\vartheta+0,0034\vartheta^2$
Грузовые вагоны груженные: четырехосные на подшипниках скольжения и шестиосные на подшипниках качения четырехосные на подшипниках качения восьмиосные на подшипниках качения	$\omega_0^{II} = 6,87 + \frac{78,48 + 0,9\vartheta + 0,0245\vartheta^2}{q_0}$ $\omega_0^{II} = 6,87 + \frac{29,43 + 0,98\vartheta + 0,0245\vartheta^2}{q_0}$ $\omega_0^{II} = 6,87 + \frac{58,9 + 0,373\vartheta + 0,0206\vartheta^2}{q_0}$	$\omega_0^{II} = 6.87 + \frac{78.48 + 0.78\vartheta + 0.02\vartheta^2}{q_0}$ $\omega_0^{II} = 6.87 + \frac{29.43 + 0.88\vartheta + 0.0196\vartheta^2}{q_0}$ $II = 58.9 + 0.255\vartheta + 0.0167\vartheta^2$
Грузовые вагоны порожние: четырехосные на подшипниках скольжения четырехосные и шестиосные на подшипниках качения	$\omega_0^{II} = 14,7+0,441\vartheta+0,00265\vartheta^2$ $\omega_0^{II} = 9,8+0,432\vartheta+0,00235\vartheta^2$	$\omega_0^{II} = 6,87 + \frac{58,9 + 0,255\vartheta + 0,0167\vartheta^2}{q_0}$ $\omega_0^{II} = 14,7 + 0,412\vartheta + 0,00177\vartheta^2$ $\omega_0^{II} = 9,8 + 0,412\vartheta + 0,00157\vartheta^2$
Пассажирские вагоны цельнометаллические на подшипниках качения	$\omega_0^{II} = 6.87 + \frac{78.48 + 1.766\vartheta + 0.0294\vartheta^2}{q_0}$	$\omega_0^{II} = 6.87 + \frac{78.48 + 1.57\vartheta + 0.00226\vartheta^2}{q_0}$

Все расчеты выполняются в тетради и заносятся в таблицу 6.

Таблица 6.

Интервалы скорости км/ч	$\omega_0^{II},\mathrm{H/T}$	ω_{x} , H/T	$\omega_{\text{ox}}, \text{H/T}$	$oldsymbol{arphi}_{ m Kp}$	υ _p , κΗ/τ	$oldsymbol{eta}_{ extsf{T}}, ext{H/T}$	$\Delta S_{\mathtt{д}}$, м

Пример 1.

Дано: ВЛ10, $\vartheta_{\rm H}$ =70км/ч, $\vartheta_{\rm K}$ =40км/ч, i= -5‰, $m_{\rm C}$ =3500т, $n_{\rm B}$ =50. Отправитель $S_{\rm T}$.

Расчет произведен для 4-х осных груженых вагонов на подшипниках качения при движении по звеньевому пути на прямом участке, колодки чугунные стандартные.

$$1. S_{\mathbf{T}} = S_n + S_{\mathbf{I}}, \mathbf{M}$$

$$2.S_n = \frac{\vartheta_{0} \cdot t_n}{3.6}$$
; $n_0 = n_{\rm B} \cdot 4 = 50$ х $4 = 200$ – количество осей состава

$$t_n = 7 - \frac{10 (-g \cdot i)}{\beta_{\text{T}}}; \quad \beta_{\text{T}} = 1000 \ \varphi_{\text{Kp}} \ v_{\text{p}};$$

$$\varphi_{\text{Kp}} = 0.27 \ \frac{\vartheta_0 + 100}{5\vartheta_0 + 100}; \ \varphi_{\text{Kp}} = 0.27 \frac{70 + 100}{5 \cdot 70 + 100} = 0.102$$

$$v_{\rm p} = \frac{\sum K_{\rm p}}{m_{\rm c}} = \frac{n_{\rm 0} K_{\rm 0}}{m_{\rm c}} = \frac{200 \cdot 68 \cdot 67}{3500} = 3,924 \text{ kH/T}$$

$$K_p = 7 \cdot 9.81 = 68.67 \text{ kH}$$

При расчете t_n используют полное значение расчетного тормозного коэффициента

$$t_n = 7 + \frac{10.9,81.5}{1000.0,102.3,924} = 8,225 \text{ c}$$

$$S_n = \frac{70.8,225}{3,6} = 159,93 \text{ M}.$$

1.
$$S_{\rm A} = \sum \Delta S_{\rm A}$$
; $\Delta S_{\rm A} = \frac{40,85 (70^2 - 60^2)}{\beta_{\rm T} + \omega_{\rm ox} + g \cdot i}$

$$\beta_{\rm T} = 1000 \, \varphi_{\rm KP} \, v_{\rm p} \; ; \; \varphi_{\rm KP} = 0.27 \, \frac{\vartheta_{\rm cp} + 100}{5\vartheta_{\rm cp} + 100} = 0.27 \, \frac{65 + 100}{5 \cdot 65 + 100} = 0.105 \; ;$$

 $v_{\rm p}^{\rm ct}$ = 0,5 $v_{\rm p}$ = 0,5 · 3,924 = 1,962 — расчетный тормозной коэффициент при служебном торможении.

$$\beta_{\rm T} = 1000 \cdot 0{,}105 \cdot 1{,}962 = 206 \text{ H/T};$$

$$\omega_{\text{ox}} = \frac{\omega_{\text{x} m_{\pi}} + \omega_0^{II} m_{\text{c}}}{m_{\text{c}} + m_{\pi}}$$
; $\omega_{\text{x}} = 23.54 + 0.108 \vartheta_{\text{cp}} + 0.0034 \vartheta_{\text{cp}}^2$;

$$\omega_{\rm x} = 23.54 + 0.108 \cdot 65 + 0.0034 \cdot 65^2 = 44.92 \text{ H/T};$$

$$\omega_0^{II} = 6.87 + \frac{29.43 + 98\vartheta + 0.0245\vartheta^2}{q_0};$$

$$q_0 = \frac{m_c}{n_0} = \frac{3500}{200} = 17,5$$
 т/ось;

$$\omega_0^{II} = 6.87 + \frac{29.43 + 98.65 + 0.0245 \cdot 65^2}{17.5} = 18.1 \text{ H/T};$$

$$\omega_{\text{ox}} = +\frac{44,92 \cdot 184 + 18,1 \cdot 3500}{3500 + 184} = 19,44 \text{ H/T};$$

$$\Delta S_{\rm A} 70\text{-}60 = \frac{40,85 (70^2 - 60^2)}{206 + 19.44 - 9.81 \cdot 5} = 301 \text{ m};$$

$$\Delta S_{\rm d} 60-50 = \frac{40,85 (60^2 - 50^2)}{\beta_{\rm T} + \omega_{\rm ox} + g \cdot i}; \quad \varphi_{\rm kp} = 0,27 \frac{55+100}{55 \cdot 5 + 100} = 0,1116;$$

$$\beta_{\rm T} = 1000 \cdot 0.116 \cdot 1.962 = 218,96 \,{\rm H/T};$$

$$\omega_{\rm x} = 23,54 + 0,108 \cdot 55 + 0,0034 \cdot 55^2 = 39,76 \text{ H/T};$$

$$\omega_0^{II} = 6.87 + \frac{29.43 + 0.98 \cdot 55 + 0.0245 \cdot 55^2}{17.5} = 15.87 \text{ H/T};$$

$$\omega_{\text{ox}} = \frac{39,76 \cdot 184 + 15,87 \cdot 3500}{3684} = 17,03 \text{ H/T};$$

$$\Delta S_{\text{A}}60-50 = \frac{40,85 (60^2 - 50^2)}{218,96 + 17.03 - 9.81 \cdot 5} = 240,37 \text{ m};$$

$$\Delta S_{\rm p} 50\text{-}40 = \frac{40,85 (50^2 - 40^2)}{\beta_{\rm t} + \omega_{\rm ox} + g \cdot i};$$

$$\varphi_{\text{Kp}} = 0.27 \frac{45 + 100}{45 \cdot 5 + 100} = 0.120;$$

$$\beta_{\rm T} = 1000 \cdot 0.120 \cdot 1.962 = 235,44 \text{ H/T};$$

$$\omega_{\rm x} = 23.54 + 0.108 \cdot 45 + 0.0034 \cdot 45^2 = 35.28 \text{ H/T};$$

$$\omega_0^{II} = 6.87 + \frac{29.43 + 0.98 \cdot 45 + 0.0245 \cdot 45^2}{17.5} = 13.9 \text{ H/T};$$

$$\omega_{\text{ox}} = \frac{35,28 \cdot 184 + 13,9 \cdot 3500}{3500 + 184} = 14,96 \text{ H/T};$$

$$\Delta S_{\text{d}} 50 - 40 = \frac{40,85 \cdot 900}{235,44 + 14,96 - 49,05} = 182,6 \text{ m};$$

$$S_{\text{T}} = S_n + S_{\text{d}} = 159,93 + 301 + 240,37 + 182,6 = 883,9 \text{ m}$$

Решим эту же задачу в системе единиц, указанных в ИТР.

Пример 2.

$$\begin{split} S_{\rm T} &= S_n + S_{\rm A} \quad ; \quad S_n = \frac{\vartheta_0 \cdot t_n}{3.6} \quad ; \quad t_n = 7 - \frac{10 \; (-i)}{\beta_{\rm T}}; \\ \beta_{\rm T} &= 1000 \; \varphi_{\rm KP} \; v_{\rm p} \; ; \quad \varphi_{\rm KP} = 0.27 \; \frac{\vartheta_0 + 100}{5\vartheta_0 + 100} = \; 0.102; \\ v_{\rm p} &= \frac{\Sigma {\rm K_p}}{m_{\rm c}} \quad ; \quad {\rm K_p} = 7 \; {\rm Tc} \; ; \quad \Sigma {\rm K_p} = n_0 \; \cdot \; 7 = 200 \; \cdot \; 7 = 1400 \; {\rm Tc}; \\ v_{\rm p} &= \frac{1400}{3500} = 0.4 \; {\rm Tc/T}; \quad \beta_{\rm T} = 1000 \; \cdot \; 0.102 \; \cdot \; 0.4 = 40.8 \; {\rm KFc/T}; \\ t_n &= 7 + \frac{10.5}{40.8} = 8.225 \; {\rm c}; \quad S_n = \frac{70 \cdot 8.225}{3.6} = 159.93 \; {\rm M}; \\ \Delta S_{\rm A} 70 - 60 &= \frac{4.17 \; (70^2 - 60^2)}{\beta_{\rm T} + \omega_{\rm ox} + i} \; ; \\ \varphi_{\rm KP} &= 0.27 \; \frac{\vartheta_{\rm cp} + 100}{5\vartheta_{\rm cp} + 100} = 0.27 \; \frac{65 + 100}{5 \cdot 65 + 100} = 0.105 \; ; \end{split}$$

 $v_{\rm p}^{\rm ct} = 0.5 v_{\rm p} = 0.5 \cdot 0.4 = 0.2$ тс/т — расчетный тормозной коэффициент при служебном торможении.

$$\begin{split} &\omega_{\rm ox} = \frac{\omega_{\rm x} \, m_{\pi} + \omega_0^{II} m_{\rm c}}{m_{\rm c} + m_{\pi}} \; ; \\ &\omega_{\rm x} = 2.4 + 0.11 \vartheta_{\rm cp} + 0.00035 \; \vartheta_{\rm cp}^2; \\ &\omega_{\rm x} = 2.4 + 0.01165 + 0.0035 \cdot 65^2 = 4.53 \; {\rm kgc/T}; \\ &\omega_{\rm 0}^{II} = 0.7 + \frac{3 + 0.1 \cdot \vartheta_{\rm cp} + 0.0025 \vartheta_{\rm cp}^2}{q_0} = 0.7 + \frac{3 + 0.1 \cdot 65 + 0.0025 \cdot 65^2}{17.5} = 1.85 \; {\rm kgc/T}; \\ &\omega_{\rm ox} = \frac{4.53 \cdot 184 + 1.85 \cdot 3500}{3684} = 1.98 \; {\rm kgc/T}; \end{split}$$

$$\Delta S_{\rm A} 70\text{-}60 = \frac{4,17 \cdot 1300}{1000 \cdot 0,105 \cdot 0,2 + 1,98 - 5} = 301,5 \text{ m};$$

$$\Delta S_{\rm A} 60\text{-}50 = \frac{4,17 (60^2 - 50^2)}{\beta_{\rm T} + \omega_{\rm ox} + i}; \quad \varphi_{\rm Kp} = 0,27 \frac{155}{375} = 0,1116;$$

$$\beta_{\rm T} = 1000 \cdot 0,1116 \cdot 0,2 = 22,32 \text{ kgc/T};$$

$$\omega_{\rm X} = 2,4 + 0,011 \cdot 55 + 0,00035 \cdot 55^2 = 4,06 \text{ kgc/T};$$

$$\omega_{\rm II} = 0,7 + \frac{3 + 0,1 \cdot 55 + 0,0025 \cdot 55^2}{17,5} = 1,62 \text{ kgc/T};$$

$$\omega_{\rm OX} = \frac{4,06 \cdot 184 + 1,62 \cdot 3500}{3684} = 1,74 \text{ kgc/T};$$

$$\Delta S_{\rm A} 60\text{-}50 = \frac{4,17 \cdot 1100}{22 \cdot 32 + 1 \cdot 74 - 5} = 24066 \text{ m};$$

Аналогично рассчитываем тормозной путь для интервала 50-40 и получим ΔS_{π} 50-40 = 182,54 м

$$S_{\text{\tiny T}} = S_n + S_{\text{\tiny A}} = 159,93 + 301,5 + 240,66 + 183,79 = 885,88 \text{ m}.$$

Пример 3.

Решим эту задачу по условию примера № 1 в Международной системе единиц.

$$\begin{split} \mathbf{B}_{\mathrm{T}}^{\mathrm{H}} &= \mathbf{g}_{\mathrm{T}}^{\mathrm{H}} m_{0} \quad , \mathrm{H} \quad ; \quad \mathbf{g}_{\mathrm{T}}^{\mathrm{H}} = 1000 \cdot \vartheta_{\mathrm{cp}} \cdot \upsilon_{\mathrm{p}}^{\mathrm{ct}} \, , \mathrm{H/T} \quad ; \\ \varphi_{\mathrm{Kp}} &= 0.27 \, \frac{\vartheta_{\mathrm{H}} + 100}{5\vartheta_{\mathrm{H}} + 100} = 0.27 \cdot \frac{170}{450} = 0.102; \\ \upsilon_{\mathrm{p}}^{\mathrm{ct}} &= 1.962 \, \mathrm{KH/T} \quad ; \quad \vartheta_{\mathrm{H}} = \frac{70}{3.6} = 19.44 \, \mathrm{m/c} \quad ; \\ \mathbf{g}_{\mathrm{T}}^{\mathrm{H}} &= 200.12 \, \mathrm{H/T} \quad ; \quad \mathbf{B}_{\mathrm{T}}^{\mathrm{H}} = 700.43 \, \mathrm{KH}. \\ P_{\mathrm{T}}^{\mathrm{H}} &= \mathbf{g}_{\mathrm{T}}^{\mathrm{H}} \cdot m_{\mathrm{C}} \cdot \vartheta_{\mathrm{H}} = 1000 \cdot 0.102 \cdot 1.962 \cdot 3500 \cdot 19.44 = 13616.4 \, \mathrm{KBT} \quad ; \\ P_{\mathrm{T}}^{\mathrm{K}} &= \mathbf{g}_{\mathrm{T}}^{\mathrm{H}} \cdot m_{\mathrm{C}} \cdot \vartheta_{\mathrm{K}} \; ; \quad \varphi_{\mathrm{Kp}} = 0.27 \cdot \frac{140}{300} = 0.126 \; ; \quad \vartheta_{\mathrm{K}} = \frac{40}{3.6} = 11.11 \, \, \mathrm{m/c} \; ; \\ P_{\mathrm{T}}^{\mathrm{K}} &= 865.24 \, \, \mathrm{KH} \\ P_{\mathrm{T}}^{\mathrm{H}} &= 1000 \cdot 0.126 \cdot 1.962 \cdot 3500 \cdot 11.11 = 9612.8 \, \, \mathrm{KBT} \end{split}$$

В системе единиц ПТР:

$$P_{\mathrm{T}}^{\mathrm{H}} = B_{\mathrm{T}}^{\mathrm{H}} \cdot \vartheta_{\mathrm{H}}$$
, кВт ; $P_{\mathrm{T}}^{\mathrm{H}} = \vartheta_{\mathrm{T}}^{\mathrm{H}} \cdot g \cdot m_{\mathrm{C}} \cdot \vartheta_{\mathrm{H}}$; $B_{\mathrm{T}}^{\mathrm{H}} = 76.4 \,\mathrm{Tc}$ $P_{\mathrm{T}}^{\mathrm{H}} = 1000 \cdot 0.102 \cdot 0.2 \cdot 9.81 \cdot 3500 \cdot 19.44 = 13 \,616.4 \,\mathrm{KBT}$; $B_{\mathrm{T}}^{\mathrm{H}} = 88.2 \,\mathrm{Tc}$; $P_{\mathrm{T}}^{\mathrm{K}} = 1000 \cdot 0.126 \cdot 0.2 \cdot 9.81 \cdot 3500 \cdot 11.11$; Пункт 3.

Скорость движения поезда на спуске установится постоянной, если силы скатывания уравновесятся силами тормозами и основного сопротивления движению /участок пути прямой/.

$$W_i = \mathbf{B}_{\mathrm{T}} + W_0 \quad ;$$

В системе СИ $W_i=g\cdot i(m_{\pi}+m_{
m c})$ – полная сила скатывания,

Н $W_0 = \omega_0^I \cdot m_{\pi} + \omega_0^{II} \cdot m_{c}$ — полная основная сила сопротивления движению поезда, Н.

 ${\bf B}_{{\bf T}}$ – тормозная сила локомотива, ${\bf H}_{{\bf T}}$;

Тормозные характеристики электровозов приведены в ПТР, рис. 4.39.

$$i = \frac{\omega_0^I m_\pi + \omega_0^{II} m_c + Br}{g (m_\pi + m_c)} ;$$

В системе единиц ПТР:

$$i = \frac{\omega_0^I m_{\pi} + \omega_0^{II} m_{c} + BT}{(m_{\pi} + m_{c})} ;$$

Пример 4.

Решим эту задачу по условию примера № 1 в Международной системе единиц.

$$i = \frac{\omega_0^I m_{\pi} + \omega_0^{II} m_{c} + B_T}{g \cdot (m_{\pi} + m_{c})} \quad ;$$

$$\omega_0^I = 18,64 + 0,098\vartheta + 0,0029\vartheta^2 = 18,64 + 0,098 \cdot 70 + 0,0029 \cdot 70^2 = 39,7 \text{ H/T}$$

$$\omega_0^{II} = 6,87 + \frac{29,43 + 0,98\vartheta + 0,0245\vartheta^2}{q_0} ;$$

$$\omega_0^{II} = 6,87 + \frac{29,43 + 0,98\vartheta \cdot 70 + 0,0245 \cdot 70^2}{17.5} = 19,33 \text{ H/T}$$

По тормозной характеристике, рис.4.28 ПТР находим тормозную силу электровоза при скорости 70 км/ч. На 9-й тормозной позиции при параллельном соединении тяговых двигателей BT = 30500 кгс или

BT =
$$30500 \cdot 9.81 = 299205 \text{ H}$$

$$i = \frac{39.7 \cdot 184 + 19.33 \cdot 3500 + 299205}{9.81 \cdot 3684} = 10.35 \%$$

Решение в системе единиц ПТР:

$$\begin{split} i &= \frac{\omega_0^I m_\pi + \omega_0^{II} m_\text{c} + \text{BT}}{m_\pi + m_\text{c}} \quad ; \\ \omega_0^I &= 1.9 + 0.01 \cdot 70 + 0.0003 \cdot 70^2 = 4.07 \text{ kgc/T} \quad ; \\ \omega_0^{II} &= 0.7 + \frac{3 + 0.1 \cdot 70 + 0.0025 \cdot 70^2}{17.5} = 1.97 \text{ kgc/T} \quad ; \\ i &= \frac{4.07 \cdot 184 + 1.97 \cdot 3500 + 30500}{3684} = 10.35 \% \quad ; \\ \Pi\text{yhkt 4}. \end{split}$$

Мощность электровоза в тормозном режиме: $P_{\mathtt{T}} = B_{\mathtt{T}} \cdot \vartheta_{\mathtt{H}}$, кВт ;

где
$$B_{\rm T}$$
 – тормозная сила, H
$$\vartheta_{\rm H}$$
 – скорость, м/с
$$P_{\rm T} = 30500 \cdot 9{,}81 \cdot 19{,}44 = 5816{,}5~{\rm KBT}.$$

Контрольное задание № 2

6. Электропневматические тормоза

Устройство и принцип действия электропневматических тормозов /ЭТП/, их типы и принципиальные схемы. ЭПТ пассажирских поездов с локомотивной тягой. Схема расположения и назначение приборов на локомотивах и вагонах.

ЭПТ электро – и дизель-поездов.

Устройство и действие приборов ЭПТ: блоки питания и управления, электровоздухораспределители, межвагонные объединения, приборы контроля.

Электрические цепи управления и их действие при всех положениях ручки крана машиниста.

ЭПТ для грузовых поездов.

Сравнительная оценка пневматических и электропневматических тормозов.

7. Автостопы и скоростемеры

Назначение и классификация устройств безопасности.

Автоматическая локомотивная сигнализация непрерывного действия /АЛСН/: устройство и действие.

Система автоматического управления торможением /САУТ/: общее устройство и принцип действия.

Устройство контроля бдительности машиниста /УКБМ/: общее устройство, порядок пользования.

Локомотивные скоростемеры назначение, устройство, кинетическая природа и принцип действия.

Диаграммная лента скоростемера, записи на ней, расшифровка. Контрольный пункт для проверки действия локомотивных устройств автостопа при выезде на депо.

8. Ремонт и испытание тормозного оборудования

Надежность и долговечность работы тормозных приборов. Ремонтные средства и организация ремонта на АКП, ПТО и в депо. Виды и сроки ремонта и испытания тормозного оборудования вагонов, локомотивов, электро — и дизель поездов. Краткая характеристика.

Основные неисправности тормозных приборов и методы их определения. Основные приемы ремонта деталей и частей тормозных приборов.

Технология ремонта и испытания тормозных приборов и тормозов в целом. Техника безопасности.

9. Обслуживание и управление тормозами

Технический процесс технического обслуживания ремонта и испытания автотормозов в парках прибытия и отправления.

Техническое обслуживание, ремонт и испытание электропневматических тормозов.

Централизованное опробование автотормозов поездов. Передовые методы подготовки и опробования тормозов в парках отправления.

Возможные неисправности тормозов, обнаруживаемые в парках отправления в процессе подготовки поезда. Порядок проверки тормозного оборудования перед выездом локомотива из депо под поезд.

Порядок отцепки и прицепки локомотива к составу поезда. Порядок полного и сокращенного опробования тормозов. Контрольная проверка. Порядок опробования электропневматических тормозов. Нормы выхода штоков тормозных цилиндров. Справка о тормозах формы ВУ-45, порядок ее выполнения и вручения машинисту.

Обеспечение поезда тормозами, порядок их размещения и включения обеспеченность поездов тормозами. Величины расчетных нажатий тормозных колодок на ось локомотивов, вагонов, электро — и дизель — поездов. Тормозное нажатие колодок вагонов международного сообщения. Порядок размещения и включения автотормозов в пассажирских и грузовых поездах.

Порядок определения величины тормозного нажатия в поездах и проверки обеспеченности поезда тормозами при композиционных и чугунных колодках.

Управление тормозами поезда

Возможны неисправности тормозов в пути следования. Контроль за управлением тормозами по ленте скоростемера, КЛУБ. Особенности управления тормо-

зами: в поездах пассажирских, грузовых, повышенной массы, длины, на участках с различным профилем пути.

Требования правил технического обслуживания тормозного оборудования и управления тормозами железнодорожного подвижного состава Приказ Минтранса России №151.

Испытание и проверка действия автотормозов и управление ими с помощью тормозоизмерительных и дорожных инструкционных вагонов. Сведения о продольно-динамических усилиях. Фазы торможения. Зависимость продольно-динамических усилий от скорости распространения тормозной волны, диаграммы наполнения тормозных цилиндров, скорости движения, массы поезда, профиля пути и состояния автосцепных приборов.

Особенности обслуживания тормозов в зимних условиях

Условия работы тормозных приборов в зимнее время. Подготовка тормозного оборудования для работы в зимних условиях. Обязанности локомотивных бригад при приемке и сдаче локомотива, при следовании с поездом. Порядок отогревания участков воздухопроводов.

Причины заклинивания колесных пар в зимнее время и меры их предупреждения.

Особенности эксплуатации тормозов в зимнее время. Предупреждение замерзания парковой воздухопроводной сети. Техника безопасности при отогреве и продувке систем под давлением.

Контрольная работа № 2

Таблица 7

Две послед- Вариант		Номера	Две послед-	Вариант	Номера
ние цифры		вопросов	ние цифры		вопросов
шифра			шифра		
01 или 51	1	15 20 33 63	26 или 76	26	10 19 34 54
02 52	2	16 21 34 62	27 77	27	11 18 35 55
03 53	3	15 22 35 61	28 78	28	12 17 36 56
04 54	4	14 23 36 60	29 79	29	13 18 37 57
05 55	5	13 24 37 59	30 80	30	14 19 38 58
06 56	6	12 25 38 58	31 81	31	15 20 39 59
07 57	7	11 26 39 57	32 82	32	16 21 40 60
08 58	8	10 27 40 56	33 83	33	15 22 41 61
09 59	9	9 28 41 55	34 84	34	14 23 42 62
10 60	10	8 29 42 54	35 85	35	13 24 43 63
11 61	11	7 30 43 53	36 86	36	12 25 44 62
12 62	12	6 31 44 52	37 87	37	11 26 45 61
13 63	13	5 32 45 51	38 88	38	10 27 44 60
14 64	14	4 31 44 50	39 89	39	9 28 43 59
15 65	15	3 30 43 49	40 90	40	8 29 42 58
16 66	16	2 29 42 48	41 91	41	7 30 41 57
17 67	17	1 28 41 47	42 92	42	6 31 40 56
18 68	18	2 27 40 46	43 93	43	5 32 39 55
19 69	19	3 26 39 47	44 94	44	4 33 38 54
20 70	20	4 25 38 48	45 95	45	3 34 37 53
21 71	21	5 24 37 49	46 96	46	2 35 36 52
22 72	22	6 23 36 50	47 97	47	4
23 73	23	7 22 35 57	48 98	48	6 35 51
24 74	24	8 21 34 52	49 99	49	2 37 34 50
25 75	25	9 20 33 53	50 00	50	3 38 33 49
					4 39 32 48

ВОПРОСЫ 1 – 16

Грузовой поезд, имеющий состав массой m_0 /т/ следует по участку с руководящим спуском i ‰. Состав сформирован из следующих вагонов:

- a/ количество четырехосных вагонов на груженном режиме $A\ \ ;$
- б/ количество четырехосных вагонов на порожнем режиме Б ;
- $\,$ в/ количество четырехосных вагонов на среднем режиме $-\,$ $\,$;
- $\Gamma/$ количество рефрижераторных вагонов на среднем Γ ;
- ${\tt Д}/$ количество восьмиосных вагонов на среднем режиме ${\tt Д}.$

Фактическое количество осей ручного торможения в поезде - $n_{\rm d}$.

Установленная скорость движения на участке – θ км/ч.

Проверьте обеспеченность поезда автотормозами и определите необходимое количество осей ручного торможения. Замените недостающее количество осей ручного торможения тормозными башмаками. Сделайте вывод о возможности следования поезда с указанной скоростью. Необходимые исходные данные в таблице 8.

Таблица 8

Номера		Характеристика грузового поезда и профиля									
вопросов	$m_{ m c},{ m T}$	A	Б	В	Γ	Д	i, %o	n_{Φ}	ϑ ,		
								•	км/ч		
1	3720	40	8	5	3	-	-8	16	75		
2	3790	35	15	9	3	-	-9	16	80		
3	4050	41	8	3	-	3	-11	20	70		
4	3870	39	9	9	2	-	-14	20	80		
5	4780	42	10	7	-	5	-12	18	75		
6	3860	35	16	12	-	-	-13	16	90		
7	4330	45	9	4	2	2	-9	22	80		
8	4240	43	2 5	10	1	2	-6	20	70		
9	4690	44	5	8	-	5	-8	24	75		
10	4190	43	17	6	-	-	-7	20	90		
11	4340	38	22	2	-	4	-10	22	80		
12	4150	45	13	4	-	-	-12	24	90		
13	4890	46	13	3	-	5	-9	22	75		
14	4470	48	11	3	3	-	-14	28	80		
15	4800	47	4	11	1	3	-12	26	75		
16	5270	51	4	7	2	2	-11	24	80		

ВОПРОСЫ 17 – 32

Поезд следует по участку в тяговом режиме /без применения автотормозов, песочниц и звуковых сигналов/.

Определите:

- 1.Подачу компрессора, M^3 /мин.
- 2. Мощность, потребляемую компрессором, кВт.
- 3. Цикл работы компрессора при заданном поезде.

Исходные данные приведены в таблице 9.

Таблица 9

$N_{\underline{0}}N_{\underline{0}}$	Серия	Ко	личество и х	арактеристик	а вагонов п	оезда
вопросов	локомоти-	4x-	4х-осный	4х-осная	4х-осная	8-осная
	ва	осный	полувагон,	платформа,	цистерна,	цистерна,
		вагон,	$63_{\mathrm{T}}, n_{2}$	$62_{\mathrm{T}}, n_{3}$	$60_{\mathrm{T}}, n_{4}$	120 $_{\rm T}$, $n_{\rm 5}$
		$62T, n_1$				
17	ВЛ85	40	10	5	-	-
18	ТЭЗ	-	40	10	5	-
19	ВЛ10	-	30	-	10	10
20	2M62	15	15	5	5	-
21	ВЛ 80 [™]	10	10	15	10	10
22	2ТЭ10Л	16	9	-	10	15
23	ВЛ80 ^С	8	20	20	9	-
24	2TЭ10B	12	15	-	15	5
25	ВЛ11	30	15	15	-	-
26	2TЭ10M	25	10	-	20	-
27	ВЛ10У	18	18	10	-	8
28	2ТЭ116	23	14	11	8	-
29	ВЛ 60 ^К	14	15	12	-	6
30	2TЭ10B	20	21	22	-	-
31	ВЛ80 ^Р	-	14	16	8	11
32	2TЭ116	19	-	20	18	-

ВОПРОСЫ 33 – 45

- 33. Начертите схему электровоздухораспределителя усл.№305-000, опишите его устройство и действие при ступенчатом служебном торможении.
- 34. Начертите схему электровозухораспределителя усл.№305-000 и опишите его устройство и действие при ступенчатом отпуске.
- 35. Начертите принципиальную электрическую схему ЭПТ электро или дизель – поезда и опишите его действие при поездном положении ручки крана машиниста.
- 36. Начертите принципиальную электрическую схему ЭПТ электро или дизель поезда и опишите его действие при положении ручки крана машиниста в положении перекрыши.
- 37. Начертите принципиальную электрическую схему ЭПТ электро или дизель поезда и опишите его действие при положении ручки крана машиниста в тормозном положении.
- 38. Начертите принципиальную электрическую схему двухпроводного ЭПТ и опишите его действие при II положении ручки крана машиниста усл.№ 395.
- 39. Начертите принципиальную электрическую схему двухпроводного ЭПТ и опишите его действие при перекрыше.
- 40. Начертите принципиальную электрическую схему двухпроводного ЭПТ и опишите его действие при ступенчатом торможении и отпуске тормозов краном машиниста усл.№ 395.
- 40. Начертите принципиальную электрическую схему двухпроводного ЭПТ и опишите его действие при У и УІ положении ручки крана машиниста усл.№ 395.
- 41. Опишите наименование механизмов /узлов/ скоростемера ЗСЛ-2М и их назначение. Укажите, что показывает и регулирует на ленте скоростемер?
- 42. Начертите схему приборов автоматической локомотивной сигнализации непрерывного действия /АЛСН/ с автостопом. Опишите ее устройство и действие.

- 43. Начертите схему расположения регистрирующих писцов с электромагнитами скоростемера. Опишите особенности расположения писцов и их назначение. Опишите пример расшифровки записей на диаграммной ленте скоростемера 3СЛ-2М.
- 44. Начертите схему приборов приемника /локомотивные устройства/ автоматической локомотивной сигнализации непрерывного действия /АЛСН/ автостопом. Опишите устройство и действие.
- 45. Начертите схему электропневматического крана усл.№ ЭПК-150Е. Опишите его устройство и действие при зарядке и торможении.

ВОПРОСЫ 45 – 63

- 46. Опишите сроки и объемы ремонта тормозного оборудования тягового подвижного состава /ТПС/.
- 47. Опишите испытание тормозного оборудования тягового подвижного состава после ремонта.
- 48. Опишите технологический процесс ремонта и испытания тормозных компрессоров и объеме КР-1, ТР-3.
- 49. Опишите технологический процесс ремонта, испытания и регулировки кранов машиниста усл.№ 395. Начертите схему контрольно-испытательного стенда.
- 50. Опишите технологический прогресс ремонта и испытания электропневматического клапана усл.№ ЭПК-150И.
- 51. Опишите технологический прогресс ремонта, испытания и регулировки крана вспомогательного тормоза усл.№ 254. Начертите схему контрольно-испытательного стенда.
- 52. Опишите порядок приемки и подготовки тормозного оборудования локомотива перед выездом из депо под поезд.
- 53. Опишите технологический прогресс полного и сокращенного опробования автотормозов. Укажите в каких случаях оно выполняется?
- 54. Опишите обслуживание тормозов в пути следования и возможные неисправности тормозных приборов.

- 55. Опишите общие правила управления тормоза.
- 56. Опишите правила управления автотормозами в пассажирских поездах кранами машиниста усл.№ 394, 395.
- 57. Опишите правила управления электропневматическими тормозами в пассажирских поездах с локомотивной тягой.
- 58. Опишите правила управления электропневматическими тормозами в моторвагонных поездах.
- 59. Опишите правила управления автотормозами в грузовых поездах кранами машинистами усл.№ 394.
- 60. Опишите особенности управления тормозами в грузовых поездах массой более 6000т и длиной более 350 осей.
 - 61. Опишите управление тормозами на затяжных спусках.
 - 62. Опишите особенности эксплуатации тормозов в зимних условиях.
- 63. Опишите основные причины заклинивания колесных пар и меры предупреждения их в зимнее время.

Методические указания к выполнению контрольной работы № 2

ВОПРОСЫ 1-16

Обеспеченность поезда автотормозами сводится к определению тормозного нажатия на 100т массы состава.

$$\frac{\Sigma K_p}{m_0} \cdot 100$$
;

где $\sum K_p$ - сумма расчетных нажатий тормозных колодок.

$$\sum K_p = 4 A \cdot \, K_p^r + 4 B \cdot K_p^\pi + 4 B \cdot K_p^{cp} + 4 \Gamma \cdot K_p^{cp} + 8 \text{Д} \cdot K_p^{cp}, \, \text{т/кH/}$$

Расчетные силы нажатия тормозных колодок вагонов приведены в справочнике по тормозам, таблица 246.

Необходимое/потребное/ количество осей ручного торможения на 100т массы состава приведено в справочнике по тормозам, таблица 243.

Расчет недостающего количества осей ручного торможения указан в примечании к таблице 243.

Максимальная допускаемая скорость движения на спусках до 10 ‰ включительно указана в таблице 244, на спусках более 10‰ до 15‰ включительно скорость движения не более 70 км/ч. При подсчете допустимой скорости движения грузовых поездов имеющих тормозное нажатие на 100т массы состава меньше единого наименьшего скорость движения поезда снижается на 2 км/ч на каждую тонну недостающего тормозного нажатия. На спусках круче 10 до 15 ‰ включительно скорость движения не более 65 км/ч.

Пример 1.

Дано: Состав состоит из 60-и четырехосных, из них у 50 вагонов воздухораспределители включены на груженный режим, у 10 вагонов — на средний. Колодки чугунные. Установленная скорость движения на участке 80 км/ч, i=10%, $n_{\Phi}=16$, $m_{\Phi}=4400$ т.

1.Определим расчетное тормозное нажатие на 100т массы состава.

$$\frac{\sum K_p}{m_{oc}} \cdot 100 = \frac{50 \cdot 4 \cdot 7 + 10 \cdot 4 \cdot 5}{4400} \cdot 100 = 36,4 \text{ TC}$$

Поезд обеспечен тормозным нажатием, так как единое наименьшее тормозное нажатие грузового груженого поезда равно 33 тс.

2.Определите необходимое /потребное/ количество осей ручного торможения

$$n_{\rm H} = \frac{0.8 \, m_{\rm c}}{100} = 35.2$$
; принимаем 36.

3. Определим недостающее количество осей ручного торможения $n_{\rm H}-n_{\rm \Phi}=36-16=20.$

Для удержания поезда на месте на руководящем спуске на локомотиве надо иметь 7 тормозных башмаков, исходя из условия, что один тормозной башмак заменяет три оси ручного торможения при установке под груженый вагон.

4.Поезд может двигаться со скоростью 80 км/ч /табл.244/.

Расчет в системе СИ

$$\frac{\sum K_p}{m_c} \cdot 100 = \frac{50 \cdot 4 \cdot 7 + 10 \cdot 4 \cdot 5 \cdot 9,81}{4400} \cdot 100 = 357, \text{ kH} ;$$

Единое наименьшее тормозное нажатие грузового груженого поезда равно $33 \cdot 9.81 = 324$ кH.

Поезд обеспечен тормозным нажатием.

Определение остальных величин аналогично рассмотренному примеру.

ВОПРОСЫ 17 – 32

1.Подача компрессора определяется по формуле

$$Q_{\kappa} = F \cdot h \cdot n \cdot i \cdot \lambda$$
, м³/мин

где : $F = \frac{\pi \cdot \mu^2}{4}$ - площадь поршня цилиндра первой ступени сжатия, м² ;

Д – диаметр поршня цилиндра первой ступени сжатия, м;

h- ход поршня цилиндра первой ступени сжатия, м;

n – частота вращения коленчатого вала, об/мин ;

i – число цилиндров первой ступени сжатия ;

 $\Lambda = 0.72$ – коэффициент подачи.

Необходимые данные для определения подачи компрессов в условии задачи и в таблице № 9 брошюры.

Таблица 9

Тип	Серия локомотива	Число ком-	Д, м	h, м	i	<i>n</i> , об/мин
компрессора		прессоров на				
		локомотиве				
Э500	ВЛ60	2	0,245	0,225	1	200
КТ6ЭЛ	ВЛ85, ВЛ10, ВЛ80 ^т ,	2	0,198	0,144	2	440
	ВЛ 80^с, ВЛ 11,					
	ВЛ10У, ВЛ 80 ^р					
КТ6	TЭ18	2	0,198	0,144	2	850
KT7	2М62, 2ТЭ10Л,	2	0,198	0,144	2	850
	2TЭ10B, 2TЭ10M,					
	2ТЭ116					

1. Мощность, потребляемая компрессом

$$N = 3.78 \cdot \frac{\propto \cdot Q_{\text{K}}}{\lambda \cdot \eta_{\text{MB}} \cdot \eta_{\text{M}}}$$
 , kBt

 Γ де : $\alpha = 0.855$ — коэффициент, учитывающий давление всасываемого и нагнетаемого воздуха. ;

$$\lambda = 0.70 + 0.85 -$$
 коэффициент подачи ;

$$\eta_{\text{из}} = 0.72 -$$
 индикаторный изотермический к.п.д. ;

$$\eta_{\text{м}} = 0.8 + 0.85 - \text{механический к.п.д.}$$

2. Цикл работы компрессора

$$T_{\text{II}} = t_{\text{B}} + t_{\text{V}}$$
, мин,

где: $t_{\rm B}=\frac{V_{\rm rp}\cdot ({\rm P_1-P_2})}{2Q_{\rm K}\cdot \rho_{\alpha}-\alpha\cdot (V_{\rm T}+V_{\rm rp})}$ — время восстановления давления в главных резервуарах от ${\rm P_1}$ до ${\rm P_2}$ с учетом подпитки утечек, мин ;

где: $V_{\rm rp}$ — объем главных резервуаров локомотива, м³ / справочник, табл. 128 или табл. 10 брошюры/.

Таблица 10

Серия ло-	ВЛ 60 ^К	ВЛ8	ТЭ3	ВЛ10	ВЛ10У, ВЛ11,	2M62	2ТЭ10Л,
комотива					ВЛ80 ^т , ВЛ80 ^с ,		2ТЭ10В,
					ВЛ80 ^р		2ТЭ10М,
							2TЭ116
$V_{\rm rp},{\rm M}^3$	1,2	1,44	2,16	1,5	1,8	2,2	2,0

$$P_1 - P_2 = 0.15 \ \mathrm{Mna} -$$
для электровоза,

$$P_1 - P_2 = 0.10 \text{ Mna} -$$
для тепловозов,

 $P_a = 0.1 \text{ Мпа} - \text{атмосферное давление,}$

 $\alpha = 0.02 \text{ Мпа/ мин} - \text{утечки в поезде,}$

$$V_{\!\scriptscriptstyle
m T} = \sum \! n \, \cdot \left(V_{\!\scriptscriptstyle
m M} + \, V_{\!\scriptscriptstyle
m 3p} + V_{\!\scriptscriptstyle
m pp}
ight) + \, V_{\!\scriptscriptstyle
m M} \,$$
 - объем тормозной магистрали поезда, м 3 ,

где $V_{\rm J}$ — объем тормозной магистрали локомотива, м³. Для упрощения расчетов можно принять для 2-х секционных локомотивов

$$V_{\pi} = 0.09 \text{ m}^3.$$

n – количество вагонов

 $V_{\rm M}$ – объем магистрали вагона, м³,

 V_{3p} – объем запасного резервуара, м³,

 $V_{3p} = 0.078 \text{ м}^3 - 4$ -х осные грузовые вагоны,

 $V_{3p} = 0.135 \text{ м}^3 - 6$ -и и 8-и осные вагоны,

 $V_{\rm pp} = 0.012 \; {\rm M}^3 - {\rm объем}$ золотниковый и рабочей камер.

Объем тормозной магистрали $V_{\rm T}$ вагона в справочнике, таблица 100 или таблица 11 брошюры.

Таблица 11

Тип вагона	4х-осный	4х-осный	4х-осная	4х-осная	8и-осная
	вагон, 62т	полувагон,	платформа,	платформа,	цистерна,
		63т	62т	60т	120т
<i>V</i> _м , м ³	0,0137	0,0128	0,0134	0,0111	0,0194

$$t_{
m y} = rac{V_{
m rp} \cdot ({
m P_1} - {
m P_2})}{lpha \cdot (V_{
m T} + V_{
m rp})}$$
 - время, в течении которого давление в главных резервуарах

при неработающих компрессорах понизится на величину $P_1 - P_2$ за счет утечек воздуха из тормозной сети, мин.

Пример 2.

Дано: Электровоз ВЛ10;

количество вагонов состава:

4x-осные вагоны - 62t - 20;

4x-осные полувагоны -63τ ; -10;

4x-осные платформы -10; 4x-осные цистерны, 62t - 5;

8и-осные цистерны, 120т – 5.

Решение

1.Подача компрессора $Q_{\kappa} = F \cdot h \cdot n \cdot i \cdot \lambda$, м³/мин;

где:
$$\mathbf{F} = \frac{\mathbf{\pi} \cdot \mathbf{g}^2}{4} = \frac{3.14 \cdot 0.198^2}{4} = 0.03 \text{ м}^2$$
 $\mathbf{h} = 0.144 \text{ м}$; $n 440 \text{ об/мин}$; $i = 2$; $\lambda = 0.72$; $Q_{\mathbf{K}} = 0.3 \cdot 0.144 \cdot 440 \cdot 2 \cdot 0.72 = 2.74$, $\mathbf{M}^3/\mathbf{M}\mathbf{U}\mathbf{H}$.

2. Мощность, потребляемая компрессом

$$\begin{split} \mathbf{N} &= 3.78 \frac{^{\propto \cdot Q_{_{\rm K}}}}{^{\lambda \cdot \eta_{_{\rm MS}} \cdot \eta_{_{\rm M}}}} = 3.78 \frac{^{0,855 \cdot 2,74}}{^{0,75 \cdot 0,72 \cdot 0,8}} = 20,5 \text{ кВт.} \\ &\propto = 0,855 \; ; \; \; Q_{_{\rm K}} = 2,74 \; , \; \mathbf{M}^3/_{\rm MИH} \; ; \; \; \lambda = 0,75 \; ; \; \; \eta_{_{\rm MS}} = 0,72 \; ; \; \eta_{_{\rm M}} = 0,8. \end{split}$$

3. Цикл работы компрессора

$$T_{\text{II}} = t_{\text{B}} + t_{\text{y}}$$

$$t_{\text{B}} = \frac{V_{\text{rp}} \cdot (P_1 - P_2)}{2Q_{\text{K}} \cdot \rho_{\alpha} - \alpha \cdot (V_{\text{T}} + V_{\text{rp}})}, \text{ мин.}$$

$$V_{\rm T} = n_1 \cdot (V_{\rm M} + V_{\rm 3p} + V_{\rm pp}) + n_2 \cdot (V_{\rm M} + V_{\rm 3p} + V_{\rm pp}) + n_3 \cdot (V_{\rm M} + V_{\rm 3p} + V_{\rm pp}) + n_4 \cdot (V_{\rm M} + V_{\rm 3p} + V_{\rm pp}) + n_5 \cdot (V_{\rm M} + V_{\rm 3p} + V_{\rm pp}), \, M^3$$

$$V_{\rm T} = 20 \cdot (0.0137 + 0.078 + 0.012) + 10 \cdot (0.0128 + 0.078 + 0.012) +$$

$$10 \cdot (0,0134 + 0,078 + 0,012) + 5 \cdot (0,0111 + 0,078 + 0,012) +$$

$$5 \cdot (0.0194 + 0.135 + 0.012) + 0.170 = 5.64 \text{ M}^3$$

$$t_{\rm B} = \frac{1,5 \cdot 0,15}{2 \cdot 2,74 \cdot 0,1 - 0,02 \cdot (5,64 + 1,5)} = 0,56$$
 мин.

$$t_{\mathrm{y}} = \frac{V_{\mathrm{rp}} \cdot (\mathrm{P_1} - \mathrm{P_2})}{\alpha \cdot (V_{\mathrm{T}} + V_{\mathrm{rp}})} = \frac{1,5 \cdot 0,15}{0,02 \cdot (5,64 + 1,5)} = 1,58 \text{ мин.}$$

$$T_{\text{ц}} = 0.56 + 1.58 = 2.14$$
 мин.

Вопросы для самопроверки при подготовке к экзамену

- 1. Назначение тормозов в поездах.
- 2.Значения автоматического торможения в эксплуатации подвижного состава железных дорог.
 - 3. Коэффициент сцепления и сила сцепления колеса с рельсом.
- 4. Действительный коэффициент трения колодки и его зависимость от различных факторов.
 - 5. Определение действительной силы нажатия тормозной колодки.
 - 6. Расчетный коэффициент трения тормозной колодки.
 - 7. Расчетная сила нажатия тормозной колодки.
 - 8. Сущность расчета тормозной силы поезда по действительному нажатию.
 - 9. Сущность метода приведения при расчете тормозной силы поезда.
 - 10. Расчетный тормозной коэффициент поезда.
 - 11. Коэффициент силы нажатия колодки на ось.
 - 12. Явления юза. Условие безъюзового торможения.
 - 13. Тормозной путь и его элементы.
 - 14. Номограммы для определения тормозного пути.
 - 15.Классификация тормозов и их основные свойства.
- 16. Устройство и принцип действия прямодействующего неавтоматического тормоза.
- 17. Устройство и принцип действия непрямодействующего автоматического тормоза.
- 18.Устройство и принцип действия прямодействующего автоматического тормоза.
 - 19.Отличие прямодействующего и непрямодействующего тормоза.
 - 20. Электропневматический прямодействующий тормоз.
 - 21. Принцип действия электрических тормозов.
- 22. Принцип действия электромагнитного рельсового тормоза; его недостатки и достоинства.
- 23. Тормозные процессы. Темп и величина снижения давления в магистрали. Воздушная волна. Тормозная и отпускная волна.

- 24. Краткий исторический обзор развития тормозов.
- 25. Основные требования ПТЭ к устройствам тормозов.
- 26. Перспектива развития тормозной техники.
- 27. Тормозное оборудование грузовых и пассажирских локомотивов. Принцип действия тормозной системы.
 - 28. Тормозное оборудование электро и дизель поездов.
 - 29. Тормозное оборудование грузовых и пассажирских вагонов.
 - 30. Тормозное оборудование вагонов международного сообщения.
 - 31. Типы приборов питания сжатым воздухом на подвижном составе.
- 32. Устройство и принцип действия регуляторов давления и регулировочных клапанов.
- 33. Устройство и действие разгрузочного механизма для всасывающих клапанов компрессора КТ6.
 - 34. Индикаторные диаграммы работы компрессоров.
 - 35. Система смазки компрессора. Марки масел, применяемых в компрессорах.
- 36. Главные резервуары. Назначение, устройство. Порядок выбора объема резервуара, сроки и порядок их испытания.
 - 37. Порядок определения мощности двигателя компрессора.
- 38. Устройство и действие крана машиниста усл.№ 395 при 1 положении ручки.
 - 39. Действие крана машиниста усл. № 395 при II положении ручки.
 - 40. Действие крана машиниста усл. № 395 при III положении ручки.
 - 41. Действие крана машиниста усл. № 395 при 1У положении ручки.
 - 42. Действие крана машиниста усл. № 395 при УЭ положении ручки.
 - 43. Действие крана машиниста усл. № 395 при У положении ручки.
 - 44. Действие крана машиниста усл. № 395 при У1 положении ручки.
 - 45. Устройство и действие крана машиниста усл. № 334Э.
- 46. Устройство и действие крана вспомогательного тормоза локомотива усл. № 254 при торможении и отпуске.
- 47. Действие крана вспомогательного тормоза локомотива усл. № 254 при торможении и отпуске краном машиниста усл. № 394.

- 48.Устройство и действие тормозной блокировки усл. № 367М.
- 49.Устройство и действие сигнализатора отпуска тормозов усл. № 352А.
- 50. Устройство и действие крана двойной тяги и комбинированного крана.
- 51.Назначение и действие пневмоэлектрического датчика усл. № 418 контроля состояния тормозной магистрали.
- 52. Назначение, устройство и действие автоматического пневматического выключателя управления.
- 53. Устройство воздухораспределителя усл.№ 292 и его действие при зарядке.
 - 54. Действие воздухораспределителя усл. № 292 при служебном торможении.
 - 55. Действие воздухораспределителя усл. № 292 при перекрыше.
- 56. Действие воздухораспределителя усл. № 292 при экстренном торможении.
 - 57. Действие воздухораспределителя усл. № 292 при отпуске.
 - 58. Свойства воздухораспределителя усл. № 292.
- 59. Устройство воздухораспределителя усл. № 270-005 и его действие при зарядке.
- 60.Устройство воздухораспределителя усл. № 483-000 и его действие при зарядке.
- 61. Действие воздухораспределителя усл. № 483-000 при служебном торможении.
 - 62. Действие воздухораспределителя усл. № 483-000 при перекрыше.
- 63. Действие воздухораспределителя усл. № 483-000 при экстренном положении.
 - 64. Действие воздухораспределителя усл. № 483-000 при отпуске.
 - 65. Свойства воздухораспределителя усл. № 483-000.
 - 66. Назначение и устройство авторежима усл. № 265-002.
 - 67. Устройство и действие авторежима усл. № 265-002.
- 68. Классификация тормозных цилиндров, назначение, устройство ТЦ в запасных резервуарах.
 - 69. Общее устройство двухпроводного электропневматического тормоза.

- 70. Действие двухпроводного ЭПТ при 1 и П ручки крана машиниста.
- 71. Действие двухпроводного ЭПТ при III и 1У положениях ручки крана машиниста.
- 72. Действие двухпроводного ЭПТ при VЭ, V и V1 положениях ручки крана машиниста.
 - 73. Общее устройство и принцип действия ЭПТ электропоездов.
 - 74. Назначение и устройство электровоздухораспределителя усл. № 305.
 - 75. Действие ЭВР усл. № 305 при служебном торможении.
 - 76. Действие ЭВР усл. №305 при перекрыше.
 - 77. Действие ЭВР усл. № 305 при отпуске.
 - 78. Достоинства и недостатки электропневматического тормоза.
 - 79. Устройство тормозной рычажной передачи локомотива.
 - 80. Действие тормозной рычажной передачи локомотива.
 - 81. Определение передаточного числа тормозной рычажной передачи.
 - 82. Устройство и принцип действия дискового тормоза.
 - 83. Порядок определения силы нажатия тормозной колодки.
 - 84. Типы тормозных колодок, их устройство.
 - 85. Достоинства и недостатки композиционных тормозных колодок.
- 86. Назначение, устройство, действие регулятора тормозной рычажной передачи усл. № 536M.
 - 87. Противоюзные устройства.
 - 88. Устройства и принцип действия АЛСН.
 - 89. Расположение оборудования АЛСН на локомотивах.
 - 90. Устройство и принцип действия ЭПК-150 при зарядке.
 - 91. Принцип действия ЭПК-150 при экстренном торможении.
 - 92. Устройство и принцип действия скоростемера ЗСЛ-2М.
- 93. Расположение регистрирующих писцов на ленте скоростемера и расшифровка записи.
 - 94. Ремонт и испытание компрессора КТ6.
 - 95. Ремонт и испытание крана машиниста усл. № 394, 395.
 - 96. Ремонт и испытание крана усл. № 254.

- 97. Ремонт и испытание ЭПК-150.
- 98. Обеспечение поездов автоматическими тормозами. Единые наименьшие и допускаемые силы нажатия для максимальных скоростей.
 - 99. Порядок включения и размещения автотормозов в поездах.
 - 100. Технический осмотр и ремонт автотормозов.

Рекомендуемая литература

- 1. Г. С. Афонин, В.Н. Барщенков, Н.В. Кондратьев. Учебник для студ. учреждений сред. проф. образования. 3-е изд., стер. М.: Академия, 2012. 320 с.
- 2. Венцевич, Лев Евсеевич. Тормоза подвижного состава железных дорог [Текст]: учебное пособие для профессиональной подготовки работников железнодорожного транспорта / Л. Е. Венцевич. 2-е изд., стер. Москва: Учеб.-методический центр по образованию на ж.-д. трансп., 2013. 559

Электронные ресурсы

- 1. Сайт СЦБИСТ- железнодорожный форум, социальная сеть. Форма доступа www.scbist.com.
- 2. Сайт Вагонник вагон и вагонное хозяйство. Форма доступа www.vagonnik.ru.
 - 3. Сайт Локомотивное хозяйство. Форма доступа www.pomogala.ru